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Discrete Structures 

Set theory: The set is mathematical concept which is undefined since any try to 

define the set implies to use the word set say “ collection ”, “ ensemble ” sometimes 

called group, family, system. Although these words are usually reserved for more 

special types of collection. 

Anything in the set is called an “ element ” it is also undefined concept. 

Note: Symbol of the sets usually capital letter say          on the other hand the 

symbol of elements of a set are small letter say        . If a is an element in the set   

we write     and read (  belongs to   ) and if   is not in   then we write     and 

read (   not belongs to   ). 

Example: 

1. The set of the number 130527 is { 1, 3, 0, 5, 2, 7}. 

2. The set of the natural numbers   ={ 0, 1, 2, …}. 

3. The set of integer numbers  ={ …, -2, -1, 0, 1, 2, …}. 

Example: 

1.   ={            } even numbers. 

2. O ={              } odd numbers. 

Definition: The set which is contains no any element called the empty set and is 

denoted by  . 

Example: 

           ={              

Definition: The set   is a subset of the set   and dented by     if each element in 

  belongs to  . 

Example: 

              , where   is rational number.  

Remark: If     and if there exists an element     and     then we say   

   . For example,      . 

Definition: A set   is called equal to a set   if     and    , i.e     if and 

only if     and    . 
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Example: 

       ={2, 4, 6},   ={               ,   ={ 2, 6, 4} then  =  =  . 

Theorem: Let   ,  ,   are sets, then  

1.    . 

2. If    ,     then     . 

3. If    ,     then     . 

Definition: ( the Universal set ) 

All set which deal with are subsets from “ Big ” set or another set then this set is 

called universal set. 

Example: 

         ={1, 2, 5},  ={2, 4, 5},  ={2, 9, 10}, so that  ={1, 2, 3, 4, 5, 6, 9,10}.  

Definition: ( Power set ) 

Let   be any set, the set of all subsets of the set   is called the power set and it is 

denoted by      or   ,  i.e      ={                     .   

Example: 

1.  ={1, 2, 3}, find       

                                              . 

2.         , then                       . 

Operation on sets 

Definition: (the intersection of set) 

The intersection of a set   and a set   is the following set                                         

                   . 

Remark: Let  ,   are two sets, then 

1.      ,      . 

2.     iff      . 

Definition: ( the union of set) 

The union of a set   and   is the set 

                  . 
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Example: 

1. Let                          then                

                      . 

   2.  Let    even numbers and    odd numbers  then              

Proposition: Let           are sets then 

1.               . 

2.                       commutative. 

3.                            associative. 

                               associative. 

Definition: ( the Disjoin set ) 

Let     are two sets, then     is called disjoin set if        

Example:   and   are disjoin set since         

Definition: ( the Difference ) 

The difference between the sets     is the set                      

Example: 

Let                         then            

Definition: ( Complement ) 

The complement of the set   is the set which contains elements not belong to  , and 

denoted by   . i.e.               . 

Example: 

Let   even numbers and     then          odd numbers. 
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Distributive Laws: 

Let           are sets, then  

     1.                      

     2.                      

Proof: 

1) Let                                                

                                                            

                         

                                …..(1) 

Now, 

   Let                                   

                                          

                                                

                     

                              …..(2) 

From (1) and (2) we get                       

De Morgan’s Law: 

Let     be any two sets, then 

       1.              

       2.              
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Proof: 1) Let                                   

                                  

                             ……(1) 

                Let                                  

                               

                               …….(2) 

                 From (1) and (2) we get               

Mathematical Induction  

Suppose the statement to be proved can be put in the form           , where    

is some fixed integer. That is, suppose we wish to show that      is true for all 

integers       The following result shows how this can be done. Suppose that 

(a)       is true and (b) If      is true for some     , then        must also be 

true. Then      is true for all     . This result is called the principle of 

mathematical induction.  

Example: 

Show, by mathematical induction, that for all    , 

                                  
      

 
 

Solution: Let                
      

 
 

1. Since 
      

 
 

 

 
  , hence      is true 

2. Suppose that      is true i.e.           
      

 
  

     We have to show that                 
              

 
 ? 
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 so that,        is true . Hence 

     is true        

Example: 

Prove that ∑         
    

             

 
        

Solution: Let      ∑         
                        

                                                                                                                    
             

 
 

Since    
           

 
    hence      is true. 

Suppose that      is true, i.e.                    
             

 
 …(*) 

Now, we prove that        is true 

i.e.                                
                         

 
 ? 

                                
             

 
         

                                                                                      
                      

 
 

                                                                                      
                       

 
 

                                                                                      
                

 
 

                                                                                      
                   

 
 

                                                                                      
                         

 
 

So that,        is true. 
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Problem: 

Prove that  1.                            

                  2.                  
 

 
        

Relation and Functions 

Example: 

1.                          

2.                     

3.                           

4.                                                      , i.e.             . 

Ordered Pairs 

An ordered pair consists of two elements, say   and  , in which one of them, say   as 

the first element and the other as the second element. An ordered pair is denoted by 

     . 

Remark: 

 1. An ordered pair       can be defined by                  . 

 2. Ordered pairs can have the same first and second elements such as                 

and      . 

 3. If     then            . 

 4. If     then            . 

Theorem: Two ordered pairs       and       are equal if and only if     and 

   . 

Product Set: Let   and   be two sets. The product set of   and   consists of all 

ordered pairs       where     and    . It is denoted by     which reads 

           . i.e.                    . 
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Example: 

 1.           and        . Then the product set 

                                             

 2. Let          Then                                 

Remark: 

 1. If set   has   elements and set   has   elements then the product set     has 

    elements. 

 2. In general        . 

 3. If    is any set and     then      . 

 4. If     and     then         iff    . 

Relations: 

Let   and   are two sets, every subset of     is called relation from   to  , 

denoted by  . 

Remark: 

 1. We say   relation on   if      . 

 2. If        , then denoted by      . 

 3. If        , then denoted by      . 

Example: 

 1. Let           and        . Then                       is a relation 

from   to  . Furthermore,                          

 2. Let            then                             is a relation in  . 

Moreover,                          
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Reflexive relation:   Let   be a relation in a set  , i.e. Let   be a subset of    . then 

  is called a reflexive relation if for every    ,        . In other words,   is 

reflexive if every element in   is related to its. 

Example:  

  1. Let             and                                    then   is not 

reflexive since       dose not belong to  . Notice that all ordered pairs       

must belong to   in order for   to be reflexive.  

  2. Let   be the relation in the real numbers defined by the open sentence       . 

Then   is not reflexive since     for every real number a. 

  3. Let Q be a family of sets, and let   be the relation in Q defined by 

                      . Then    is a reflexive relation since every set is a subset 

of itself.  

Symmetric relation: Let   be a relation in a set  . Then   is called a symmetric 

relation if         implies         that is, if   related to  , then   is also related 

to  . 

Example: 

  1. Let           and let                                  . Then   is not a 

symmetric relation since         but        . 

  2. Let   be the relation in the natural numbers   which is defined by               . 

Then   is not symmetric since             but                     . i.e. 

        but        . 

Transitive relation: A relation   in a set   is called a transitive relation if         

and         implies        . 

Example: 

 1. Let   be the relation in the real numbers defined by       . Then if     and 

    implies    . Thus   is a transitive relation. 
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  2. Let          , and let                            . Then   is not a 

transitive relation since         and         but        . 

Equivalence relation: A relation   in a set   is an equivalence relation if 

  1.   is reflexive, that is, for every    ,        . 

  2.   is symmetric, that is,         implies        . 

  3.   is transitive, that is,         and         implies        . 

Example: Let          . Determine whether the relation is reflexive, symmetric 

or transitive. 

  1.                                                                                                  

  2.                                    

  3.                                          

  4.                                                    . 

  5.                        

Solution: 

  1. Reflexive, symmetric, transitive. 

  2. Not reflexive, not symmetric, not transitive. 

  3. Not reflexive, not symmetric, transitive. 

  4. Reflexive, not symmetric, not transitive. 

  5. Not reflexive, symmetric, not transitive. 

Example: 

Consider the relation   that is define on    by                    . 

Solution: 

        since                
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        since                   

         since                  

          since                
 

 
   

Now,  

1.   is reflexive? 

    Let                        . So that,   is reflexive. 

2.   is symmetric? 

    Let      , we have to show      ? 

     Since                    

Now,  

                              s.t.       

                    so that   is symmetric. 

  3.   is transitive? 

       Let              , we have to show      ? 

                                        

                                                        

               

        So that from (1), (2), and (3)   is equivalence relation. 

Problem: 

Let               and   is defined on   by                . Is   an 

equivalence relation. 
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Example: 

Let          , we define the relation   on   by                    . 

Solution: 

               

                 

                  

  1.   is reflexive relation? 

       Let        , it is clear that               since      . 

  2.   is symmetric relation? 

       Let                                              . 

   3.   is transitive relation? 

        Let                                   , we have to show that              ? 

         Since                    
  

 
    

  

 
              

               ,                so that by (1), (2), and (3)   is equivalence relation. 

Functions  

Definition:  Let   be a relation defined from a set   to set  , then   is called a 

function                      if the following holds: 

   1.            such that        . 

   2. If                                        

The set   is called the domain of the function  , and   is called the co-domain  or 

range of  . Further, if     then the element in   which is assigned to   is called 

image of   and is denoted by     .    
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Example: 

  1. Let             and          . Define a function   of    into   be the 

correspondence                                   . By this 

definition, the image for example are           .  

  2. Let          ,       defined by                 is not function because 

not for each    , i.e.                     . 

  3.       define by                             is not function since         

and         but    . 

Example: Let             and        . Determine whether the relation   

from        is a function. If it is function, give its range. 

  1.                            . 

  2.                                    

  3.                                    

Solution:  

   1. Yes function,             . 

   2. No. 

   3. No. 

Problem: Let             and        . Determine whether the relation   from 

       is a function. If it is function, give its range. 

  1.                            . 

  2.                                    

  3.                                    
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Equal function 

If         are two functions defined on the same domain   and if           for 

every    , then the functions         are equal and we write    . 

Example: 

Let         where   is a real number. Let      where   is a complex number, 

then the function   is not equal to   since they have different domains.  

Example: Let the function   be defined by the diagram 

                                       

  

 

 

Let a function   be defined by the formula         where the domain of   is the 

set      ,  then       since  they  both  have  the  same  domain  and since         

assign the same image to each element in the domain. 

Range of a function 

Let   be a mapping of         , that is,       we define the range of   to consist 

of those elements in   which appear as the image of at least one element in  . We 

denote the range of       by       i.e.                   . 

Identity function 

Let   be any set. Let the function       be defined by the formula        for 

each element in   then   is called the identity function and denote by   or   . 

Constant function  

A function   of          is called a constant function if the same element     is 

assigned to every element in  . In other words,       is a constant function if the 

range of   consists of only one element. 

1 

2 

3 

4 

1 

2 
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Example:  

Let the function   be defined by the diagram 

   

 

        

         

Then   is a constant function since   is assigned to every element in  . 

Example: 

Let the function be defined by the diagram 

 

 

 

   

Then   is not a constant function since the range of   consists of both        . 

Definition: Let   be a function of    into  . Then   is called 

  1. One – one [injective] 

           If                   

     or 

           If                    

  2. Onto [surjective] 

           If for each    , there exists     such that       . i.e.       . 

  3. Bijective 

           If   is both injective and surjective.  

 

 

 

 

1 

2 

3 

a 

b 

c 

1 

2 

3 

a 

b 

c 
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Example: 

  1. The identity function is injective since                   . 

  2. The identity function is surjective since for each           such that 

      .  

  3. Let            ,          . Define by                      and 

       then              so that   is not onto. 

  4. Let                      , Let       define by  

      

 

 

 

           is not injective because            but    .   is surjective, notice that  

                thus   is onto.  

Problem: 

Let         are two sets and the function from   to   are given. Determine whether 

the function is one to one or onto (or both or neither). 

  1.                                

                                     

  2.                            

                                

 

 

 

 

x 

y 

z 

a 

b 

c 

d 
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Composition function 

Let                   be two functions then we define a function         

by           (    )     . This new function is called the composition 

function of        . 

 

 

 

 

Example: 

Let                  be defined by the diagram 

  

 

 

 

We compute           by its definition 

                            (    )         

                            (    )         

                            (    )         

Example: 

Let             such that          and            . Now,  

          (    )                         . 

A 

B 

C 

  
  

      

C B A 

a 

b 

c 

x 
y 

z 

r 

s 

t 
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          (    )                                   . It is 

clear that        . 

Inverse of function   

Let   be a function of   into  , and let    . Then the inverse of  , denoted by 

       consists of those elements in   which are mapped onto  , that is, those 

elements in   which have be as their image. i.e. if       then                   

                      . Notice that        is always a subset of  . 

Example: 

Let the function       be defined by the diagram 

 

 

 

 

Then                                       

Statements 

Statements is a verbal sentence helpful will be denoted by the letters          . The 

fundamental property of a statement is that it is either true or false but not both. The 

truth fullness or falsity of a statement is called its truth value. Some statements are 

composite, that is, composed of sub statements are various connectives which will be 

discussed sub sequently.  

Example: 

  1.                                      is a composite statement with sub 

statements                    and                            . 

  2.                          is not a statement since it is neither true nor false. 

a 

b 

a 

c 

x 

y 

z 

A B 
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  3.                         is a composite statement with sub statements 

                 or                . A fundamental property of a composite 

statement is that, its truth value is completely determined by the truth value of its 

sub statements and the way they are connected to form the composite statement. 

Conjunction 

Any two statements can be combined by the word         to form a composite 

statement which is called the conjunction of the original statements. The conjunction 

of the two statements         is denoted by    . 

Example: 

Let   be                  and let   be                       . Then     denotes the 

statement                                        . The truth value of the composite 

statement     satisfies the following property: 

If   is true and   is true, then     is true, otherwise     is false. In other words, 

the conjunction of two statement is true only if each component is true. 

Example: 

Consider the following four statements 

  1. Paris is in France and      . 

  2. Paris is in England and      . 

  3. Paris is in England and      . 

  4. Paris is in France and      . 

It is clear that only (4) is true. Each of the other statements is false since at least one 

of its components is false. 
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Truth table of         can be written in the form    

p q     

T T T 

T F F 

F T F 

F F F 

 

Disjunction 

Any two statements can be combined by the word        to form a new statement 

which is called the disjunction of the original two statements. The disjunction of 

statements         is denoted by    . 

Example: 

Let   be                                        , and let   be 

                       then     is the statement 

                                                             . 

The truth value of the composite statement     satisfies the following property: 

If   is true or   is true or both         are true, then     is true, otherwise,     is 

false. In other words, the disjunction of two statements is false only if         are 

false. The truth table of          can be written in the form 

  p q     

T T T 

T F T 

F T T 

F F F 
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Example: 

Consider the following four statements 

  1. Paris is in France or       . 

  2. Paris is in England or       . 

  3. Paris is in France or       . 

  4. Paris is in England or       . 

It is clear that only (4) is false. Each of the other statements is true since at least one 

of its components is true. 

Negation 

Given any statement  , another statement, called the negation of  , can be formed by 

writing                      before   or, if possible by inserting in   the word 

        . The negation of   is denoted by   . 

Example: 

Consider the following three statements 

  1. Paris is in France. 

  2. It is false that Paris is in France. 

  3. Paris is not in France. 

Then (2) and (3) are each the negation of (1). 

Example: 

Consider the following statements 

  1.       

  2. It is false that       

  3.       
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Then (2) and (3) are each the negation of (1). 

The truth value of the negation of a statement satisfies the following property: 

If   is true, then    is false; if   is false, then    is true. 

       

T F 

F T 

 

Conditional 

Many statements, especially in mathematics are of the form                 such 

statements are called conditional statements and are denoted by    . The truth 

value of the conditional statement     satisfies the following property: 

The conditional     is true unless   is true and   is false. 

The truth table of         can be written in the form 

     p q     

T T T 

T F F 

F T T 

F F T 

 Remark: 

Consider the conditional proposition     and other simple conditional proposition 

which contain   and  , i.e.                     , called respectively, the 

converse, inverse, and contra positive propositions. 

The truth table of these four propositions are as follows:      

p q                                

T T F F T T T T 

T F F T F T T F 

F T T F T F F T 

F F T T T T T T 
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Example: 

Let                  

                                   

                                                              

                                                            

                                                                       . 

                                                                       . 

Biconditional  

Another common statement is of the form                        or simply, 

           . Such statements are called biconditional statements and denoted by 

   . 

The truth value of the biconditional statement     satisfies property: 

If         have the same truth value, then         is true, 

If         have opposite truth value, then         is false. 

Example:  

Consider the following statements 

  1. Paris is in France iff      . 

  2. Paris is in England iff      . 

  3. Paris is in France iff      . 

  4. Paris is in England iff        

According , (3) and (4) are true while (1) and (2) are false. 
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The truth table written as follows 

     p q     

T T T 

T F F 

F T F 

F F T 

 

Logical Equivalence 

Two statements are said to be logically equivalent if their truth table are identical. We 

denote the logical equivalent of          by     . 

Example: 

The truth tables of                       are as follows: 

p q                     

T T T T T 

T F F T F 

F T T F F 

F F T T T 

  

     p q     

T T T 

T F F 

F T F 

F F T 

 

Hence,                     
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Example: 

The truth tables below show that              are logically equivalent, i.e. 

         

 

  

 

     p q         

T T F T 

T F F F 

F T T T 

F F T T 

 

Problems 

Show that  

  1.              

  2.             

 

 

 

 

 

 

 

     p q     

T T T 

T F F 

F T T 

F F T 
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Some of questions and solutions of discrete structures 

1. Prove that the statement is true for every positive integer  . 

      
 

   
 

 

   
 

 

   
   

 

            
 

 

    
 

  a.    is true, since 
 

                
 

 

      
 

 

      
 

 

 
 

 

 
 

 

 
 

  b. assume that    is true 

      
 

   
 

 

   
 

 

   
   

 

            
 

 

    
  

     Hence, 

       
 

   
 

 

   
 

 

   
   

 

            
 

 

                    
   

                            
 

    
 

 

                
 

 

    
 

 

            
  

                                   
         

            
 

        

            
 

           

            
  

                                     
     

        
   thus,      is true. 

 2. Prove that the statement is true for every positive integer  . 

                     
 

 
         

      a.    is true, since         
 

 
              

 

 
     

                                                     

      b. assume that    is true 

                              
 

 
        

     Hence,  
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       thus,      is true.  

  3. Prove that the statement is true for every positive integer  . 

                      
            

 
 

      a.    is true, since     
           

 
   

 

 
     

      b. assume that    is true 

                        
            

 
  

      Hence, 

                           
            

 
        

        
                    

 
      [

              

 
]   

             [
        

 
]       [

           

 
]   

        
(    (       )         )

 
 thus,      is true. 

4. Let            . Determine whether the relation is reflexive, 

symmetric or transitive.  

   a.                                                      

   b.                                          

   c.                                                            
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solution 

   a. Reflexive, symmetric, transitive.  

   b. Not reflexive, not symmetric, not transitive.  

   c. Not reflexive, not symmetric, transitive. 

5. Determine whether the relation   on the set   is an equivalence relation: 

    a.             ,                                          

    b.            ,  

                                                                 

Solution 

    a. 1)   is reflexive   2)   is not symmetric  3)   is transitive  

         hence,    is not an equivalence relation since   is not symmetric. 

    b. 1)   is reflexive   2)   is not symmetric  3)   is not transitive 

         hence,    is not an equivalence relation since   is not symmetric and 

not transitive. 

6. Let    , the set of integers, and let   be defined by       if and only if 

   . Is   an equivalence relation? 

Solution  

     1) Since            thus,   is reflexive. 

     2) If                                                  .  

     3)   is transitive, since                                

         We see that   is not an equivalence relation. 
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7. Let      . Define the following relation   on  :             iff 

           . Show that   is an equivalence relation. 

solution  

  1)   is reflexive, since                        

      Since             

   2)   is symmetric, since             that is,              implies  

                     hence,            . 

   3)    is transitive, since             that is             and     

            that is             implies    

                          hence,             therefore,  

            

8. Verify that the formula yields a function from       . 

                        

    Solution 

     Each integer has a unique square that is also an integer  

         

 

 

 

 

 

  


